A

Argonne

NATIONAL
LABORATORY

Programming Models for

... for a brighter future

High-Performance Computing

Rusty Lusk
Mathematics and Computer Science Division
Argonne National Laboratory

UChicago »
Argonne,

Office of
V‘ ‘Scionce

Outline of the Situation

» Million core systems and beyond are on the horizon

» Today labs and universities have general purpose
systems with 10k-200K cores (BGL@ LLNL 200K,
BGP@Argonne 160K, XT5@ORNL 150K cores)

* By 2012 there will be more systems deployed in the
200K-1M core range

* By 2020 there will be systems with perhaps 100M cores

» Personal systems with > 1000 cores within 5

* Personal systems with requirement for 1M threads is not
too far fetched (GPUs for example)

A Argonne National
Laboratory

Looking out to Exascale...
Concurrency will be Doubling every 18 months

Power and Memory costs dominate

Novel technologies introduced
1EFs @
100PF3
10PF
1PFS = g
100TF§ i
10TE: BGIL
1TF3
] kM Growth of massive parallelism within chips
E Growth fueled primarily by transistors on a chip

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

A Argonne National
Laboratory

Traditional Sources of Performance
Improvement are Flat-Lining (2004)

10,000,000 T

« New Constraints

|
— 15 years of exponential clock g
rate growth has ended 1,000,000 I

* Moore’s Law reinterpreted: 100,000

— How do we use all of
those transistors to keep "
performance increasing
at historical rates?

— Industry Response:
#cores per chip doubles
every 18 months instead o

of clock frequency! /'//
r: 1‘ s |
/ ! A/{: istors (000) |

1 =
 Clock Speed (MHz)

t
|
- | -.o. aPower (W)
| ®PerfiClock (ILP)
0 | I 1 I

1970 1975 1980 1985 1990 1995 2000 2005 2010

A Argonne National
Laboratory

1,000

100




Multicore comes in a wide variety

— Multiple parallel general-purpose processors (GPPs)
— Multiple application-specific processors (ASPs)

Intel Network Processor IBM Cell
1 GPP Core 1 GPP (2 threads)
16 ASPs (128 threads) 8 ASPs
s ([ E [ DD [ oy .
Sfooi o Picochip DSP
dam [Fabe 1 GPP core
IEITIIETT: 248 ASPs
wwwww Cisco CRS-1
Sun Niagara i~
8 GPP cores (32 threads) 188 Tensilica GPP
Intel 4004 (1971): .
4-bit processor, “The Processor is the
2312 transistors, | new
~100 KIPS . 7
10 micron PMOS, Transistor” [Rowen]
11 mm?2 chip

What’s Next?

Mixed Large —
All Large Core and

Small Core

Many Small Cores

i 3 -
Llll
"
|| All Small Core ™™ mmEEE
—— I
Different Classes of Chips
Home
Games / Graphics

[ Business
Scientific
Many Floating- + 3D Stacked
Point Cores Memory

The question is not whether this will
happen but whether we are ready

Source: Jack Dongarra, ISC 2008
and this is just for the individual cores

A Argonne National
Laboratory

How Will We Program Them?

| Still an unsolved problem
— Many approaches described at SC’09
« especially for GPUs

B Some believe a totally new programming model and
language will be needed.

B Some mechanism for dealing with shared memory will be
necessary
— This (whatever it is) plus MPI is the conservative view

B Whatever it is, it will need to interact properly with MPI

B May also need to deal with on-node heterogeneity

B The situation is somewhat like message-passing before
MPI

— And itis too early to standardize

A Argonne National
Laboratory

MPI is Current HPC Programming Model

B MPI represents a very complete definition of a well-defined
programming model

B MPI programs are portable

B There are many implementations
— Vendors
— Open source

B Enables high performance for wide class of architectures
— Scalable algorithms are key

B Small subset easy to learn and use

B Expert MPI programmers needed most for libraries, which are
encouraged by the MPI design.

A Argonne National
Laboratory




The MPI Forum Continues to Refresh MPI

® New signatures for old functions
— E.g. MPI_Send(...,MPI_Count,...)
B Details
— Fortran binding issues..
B New features
— MPI_Process_Group and related functions for fault tolerance
New topology routines aware of more hierarchy levels
— Non-blocking collective operations
A simpler one-sided communication interface

e Or perhaps standardized semantics for interacting with shared-
memory programming systems in general

“y

More scalable versions of the “v” collectives

B See hitp://www.mpi-forum.org for details of working groups

N Argonne National
Laboratory

Why Won’t “MPI Everywhere” suffice?

B Core count on a node is increasing faster than memory size.

B Thus memory available per MPI process is going down.

B Thus we need parallelism within an address space, while continuing
to use MPI for parallelism among separate address spaces.

B We don’t have a good way to do this yet.

B Whatever we use, it must cooperate with parallelism across address
spaces, so its APl must interact in a well-defined way with MPI.

B Some applications are expressing the need for large address spaces
that span multiple multi-core nodes, yet still are each a small part of
the memory of the entire machine.

N Argonne National
Laboratory

Moving Beyond MPI

H Any alternative to MPI (at its own level) will have to have some of the
good properties of MPI

— Portability
— Scalability
— Performance
B Perhaps alternatives exist at different levels.

B But they will still have to interact with MPI, in order to provide a path
from where we are now to more abstract models

— Clear interoperability semantics
— Can be used either above or below C/Fortran/MPI code

N Argonne National
Laboratory

Some Families of Programming
Models and Associated Languages

B Shared-memory and annotation languages
— Especially OpenMP
— Likely to coexist with MPI
B Partitioned Global Address Space Languages
— UPC, Co-Array Fortran, and Titanium
— One step removed from MPI
B The HPCS languages
— X10, Chapel, Fortress
— Two steps removed from MPI

N Argonne National
Laboratory




OpenMP

B OpenMP is a set of compiler directives (in comments, like HPF) plus
some library calls

B The comments direct the execution of loops in parallel in a
convenient way.

B Data placement is not controlled, so performance is hard to get
except on machines with real shared memory.

B Likely to be more successful on multicore chips than on previous
SMP’s (multicore = really, really shared memory).

B Can co-exist with MPI

— MPI’s levels of thread safety correspond to programming
constructs in OpenMP

» Formal methods can be applied to hybrid programs
B New book by Barbara Chapman, et al.

A Argonne National
Laboratory

Other Annotation-based approaches

B The idea is to retain the sequential programming model

B Annotations guide source-to-source transformations or compilation
into a parallel program

B HPF and OpenMP (part 1) are examples

B Others in research mode

A Argonne National
Laboratory

The PGAS Languages

B PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with awareness
of data locality, for performance

— Co-Array Fortran, an extension to Fortran-90)
— UPC (Unified Parallel C), an extension to C
— Titanium, a parallel version of Java

Global address

space / >\ '

Local address
spaces

B Fixed number of processes, like MPI-1

A Argonne National
Laboratory

PGAS Languages Status

B Compilers exist
— In some cases more than one
B Applications are being tried
W Substantial support, at least for UPC

B Early experiments are encouraging with respect to
performance

— Some reports are misleading.
M Little take-up by scientific applications so far
B PGAS BOF at SC’09

A Argonne National
Laboratory




The DARPA HPCS Language Project

B The DARPA High Productivity Computer Systems (HPCS) Project is
a 10-year, three-phase, hardware/software effort to transform the
productivity aspect of the HPC enterprise.

B In Phase ll,three vendors were funded to develop high productivity
language systems, and each assigned a small group to language
development

— IBM: X10
— Cray: Chapel
— Sun: Fortress

B In Phase lll, Sun was dropped from DARPA support. Both IBM and
Cray efforts are continuing. Actually, Sun’s effort is too, internally
supported.

B Two steps removed from MPI: not a fixed number of processes

N Argonne National
Laboratory

Quasi Mainstream
Programming Models

e C, Fortran, C++ and MPI

* OpenMP, pthreads

* (CUDA, RapidMind, Cn) - OpenCL

* PGAS (UPC, CAF, Titanium)

HPCS Languages (Chapel, Fortress, X10)

* HPC Research Languages and Runtime

* HLL (Parallel Matlab, Grid Mathematica, etc.)

N Argonne National
Laboratory

Hybrid Programming Models

B Some shared-memory API’s that can be used with MPI
— POSIX threads -- explicit thread creation, locks, condition vars
— OpenMP

» Sequential programming model with annotations, parallel
execution model

— Yet to be invented...
B The current situation: OpenMP + MPI

— Works because of well-thought-out explicit contracts between the
models.

» MPI standard defines levels of thread safety
* OpenMP defines types of code regions

» These work together in ways defined by the respective
standards

— Hard to get performance with OpenMP because of lack of locality
management, excessive synchronization.

N Argonne National
Laboratory

One Possible Near Future: PGAS+MPI

B | ocality management within an address space via local, remote
memory

B An address space could be bigger than one node
— Might need more hierarchy in PGAS definitions
B Just starting to work with PGAS folks on UPC+MPI and CAF+MPI
— Center for Programming Models base program project with ANL,
LBNL, Rice, Houston, PNNL, OSU
| Until recently PGAS has focused either on competing with MPI or
with OpenMP on single node
— Need to make interoperability with MPI a priority to attract current
HPC applications

N Argonne National
Laboratory




A More Distant Future

B HPCS-type languages have many interesting ideas for exploiting
less obvious parallelism

® Need coordination and freedom from vendor ownership
B A convergence plan

— (DARPA briefly funded a convergence project, which was
promising until cancelled)

® A migration plan for current applications
— Interaction with MPI
— Use in libraries

B Both Chapel and X10 highly visible in HPC Challenge at SC '09
— Benchmarks, not full applications

4 Argonne National
2 Laboratory 28

Libraries

B Libraries are an easier way to implement programming models than
languages
— need old linker, not new compiler
B Libraries can hide complexity of MPI (or other programming model
instantiation
B Libraries can provide special-purpose programming models
— still with applicability across applications

B Library implementation would be the next step in applying new
programming approaches like PGAS or HPCS languages

— will need to work with existing programming environment, other
compilers and languages
— This would provide a migration path for applications
B My current work is on the ADLB (Asynchronous, Dynamic Load-
Balancing) library
— scalable implementation of the master/slave programming model

""A Argonne National
v Laboratory

The Transition is Starting

= In large-scale scientific computing today essentially all codes are
message-passing based. Additionally many are starting to use some
form of multithreading on SMP or multicore nodes.

= Multicore is challenging programming models but there has not yet
emerged a dominate model to augment message passing

= There is a need to identify new hierarchical programming models
that will be stable over long term and can support the concurrency
doubling pressure

= Current approaches to programming GPU’s are for library
developers, not application developers

""A Argonne National
v Laboratory

Summary

B MPI is a successful current standard, but emerging architectures will
force us to look at new approaches

B Most immediate need: a shared-memory programming model that
interacts well with MPI

B Next need, and approach to programming heterogeneous multi-core
processors that is suitable for HPC computers and application
scientists

B Programming models for exascale are still in experimental stages

® Hiding MPI calls in higher-level libraries can be a useful approach to
programmer productivity

""A Argonne National
v Laboratory




The End

25




